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STUDY TO EVALUATE EXISTING RE-ENTRY AND OTHER
FLIGHT TEST DATA

1. INTRODUCTION

This report summarizes the work initiated and completed under
NASA Contract No. NAS7-216 (Ref. 1) during the second quarter period
June 12, 1963 through September 13, 1963. (?his second quarterly
report gives the present status of data collection, summarizes the
results obtained to date in the supporting studies of data-reduction
and heat-transfer prediction methods, and records the man-hour and
dollar expenditure histories through the end of this reporting
period. In addition, the work planned for the next quarterly period
is indicated.

With the exception of some data for the Polaris AIX series
flights noted in Section 2.1 below, all data and other information
necessary for evaluation of re-entry heat transfer for the flights
listed in Reference 1 were collected during this reporting period.
Work was begun on reducing the re-entry heat-transfer (temperature)
data. Development of a digital computer program for direct solution
of the blunt-body inviscid flow-field problem has progressed to the
point where perfect-gas solutions for continuous curvature bodies
and bodies with sonic corners can be obtained. Representative
results obtained to date using this program are given in Section
2.3.2 and compared with corresponding results given by indirect
and empirical methods. A number of available methods for the pre-
diction of heating from fully developed, attached, laminar and
turbulent boundary layers will be used to provide comparisons with
experimental results obtained in this program. These methods are
presented and briefly discussed in Section 2.3.4. They have, for
the most part, been chosen from the methods originally employed
in design and evaluation of the heat shields to be considered in
this study.

2. WORK UNDERTAKEN - JUNE 12, 1963 THROUGH SEPTEMBER 13, 1963
2.1 Data Collection

Authorizations were received during this reporting period for
access to and acquisition of all data and other information neces-
sary for reduction and interpretation of results for the flights
initially designated for consideration (Ref. 1). To date all the
information necessary has been obtained or is in the process of
being transferred to Vidya. Table I summarizes the status of this
collection process at the end of the second quarter. With the
exception of some of the geometrical information and the nose-shield
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temperatures for one of the Polaris flights, all of the necessary
information is available. Requests for the data not now available
have been made to LMSC and it is expected that it will be trans-
mitted to Vidya within the next month.

In general, the temperature data available are in the form of
plots of the original, unsmoothed, commutated, and calibrated
telemetry signals. These are readable to within + 5° F which is
an order of magnitude less than the scatter band exhibited by the
raw data. Work was begun on smoothing the temperature data in
preparation for its utilization in the Vidya data-reduction con-
duction program. It is expected that heat-transfer data reduction
for the Air Force Mark 2 and X-17 flights will be completed during
the next reporting period.

2.2 Data-Reduction Methods Studies

transfer rates or heat-transfer coefficients inferred, in general,
from digital computer solutions of the variable thermal property
conduction equation corresponding to the heat-shield construction.
Initial and boundary conditions are defined using smoothed experi-~
mental temperature data. There are a number of potentially impor-
tant error sources in such a data-reduction procedure. For the
relatively thick, high thermal conductivity shields such as those
to be considered in this study, the errors may result from the
following:

(1) Replacement of the continuous shield materials by the
lumped parameter nodal structures used in obtaining numerical,
that is, finite-difference solutions.

(2) Replacement of the continuous boundary conditions by
conditions defined at discrete points in time.

(3) Replacement of the actual temperature response by smoothed
data inferred from the scattered experimental results produced by
commutated telemetry signals.

(4) Distortion of the shield thermal response from that
assumed in the digital conduction solution because of the existence
of thermocouple inserts and pressure taps in the actual shield.

(5) Uncertainties in the thermophysical properties of the
shield materials and in the contact resistances between materials.

Of these factors, the first two can be minimized, within the
limitations of computational costs by proper selection of nodal
and input spacing. The third factor must be evaluated empirically
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since there is, to the writer's knowledge, no way of operating on
the scattered data that will insure that the smoothed temperature
response duplicates that of the actual shield. With regard to the

fourth potential error source, some work has been done, Reference 2,

to determine the disturbance in shield temperature caused at the
thermocouple tip location in the limiting case in which the thermo-
couple is replaced by a void. These results indicate that, in all
cases to be considered in this study, the temperature disturbance
in this limit is an order of magnitude less than the temperature
data scatter bands experienced. The argument leading to this con-
clusion is given in Section 2.2.2. Finally, evaluation of the
effects of uncertainties in the thermophysical properties can best
be handled in the course of evaluating the response of specific
shield configurations. This factor will not be discussed further
at this time. It will be considered, as appears necessary, in the
course of evaluating individual flight test results.

The first three of the above factors were evaluated on an
empirical basis for cases covering the ranges of conditions antic-
ipated in the flight tests to be considered in this study. This

was done by obtaining a series of one-dimensional, constant thermal-

property conduction solutions for a l-inch-thick copper slab per-
fectly insulated at one surface. This configuration and material
are representative of the heat-sink shield sections employed in
all but one of the flights to be considered, Reference 1. Digital
computer solution results were compared with the analytical solu-
tion for surface heat-transfer rates for this configuration with
constant initial temperature and a prescribed heated surface tem-
perature response given by

T = altz + a2t3 (1)

The coefficients in this equation can be adjusted to cover the
anticipated range of maximum surface heat-transfer rates which is
from approximately 100 to 1000 Btu/sq ft-sec and the range of heat-
pulse duration which is from 5 to 50 seconds, References 3 and 4.
The surface heat-transfer rate for the above boundary conditions

is
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where

120 (2n + 1)2
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b =
n

2.2.1 Nodal spacing and input intervals

The following cases were considered:

Maximum Approximate Surface
Surface Heat- Duration of Number of Temperature
Transfer Rate Heat Pulse Nodes Input Interval
(Btu/ft®-sec) (sec) (sec)

131.2 50 15, 10, and 5 1
890.8 5 15, 10, and 5 0.10 and 0.20

The temperature history given by Equation (1) was used to define
the surface temperature at the discrete input points and linear
interpolation was used to determine the surface temperature to be
used in actual internal computation steps governed by stability
limitations. The results of these calculations were then compared
with results given by the corresponding analytical expression for
surface heating.

The behavior of the numerical results obtained is typical of
those generated in explicit numerical solutions of the conduction
equation. Initially large errors (up to 50 percent) in the surface
heat-transfer rate damp out within three to six print-out intervals
of 1 and 0.1 second in the cases considered here. The error magni-
tude again increases as the surface heat-transfer rate approaches
zero. The results obtained at the time of maximum heat-transfer
rate are summarized in Figure 1 which illustrates the effect of

the characteristics of the surface temperature response (heat pulse),

the nodal spacing used, and the surface temperature input interval.
In the higher maximum heat rate case results for the coarser input
are apt to be misleading since the errors in the digital solution

are alternately high and low in magnitude, while those of the solu-

tions with the finer input are essentially monotonic. Consequently,

the error in surface heat-transfer rate is shown for the coarse
input case both for the time of maximum surface heat-transfer rate
and for the print-out times immediately preceding and following it.
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It is concluded from this study that for the relatively short
heat pulses associated with the X-17 flights a system of 5 nodes
in a direction normal to the primary nose-shield surface is adequate
to produce an accuracy of + 1 percent in the inferred surface heat-
transfer rates near peak heating. For the longer heat pulses asso-
ciated with the other heat-sink shields to be considered, 15 nodes
will be necessary for comparable accuracy. It should be noted that
these accuracies are attained using the analytical surface tempera-
ture histories as inputs to the conduction solution. The effect
of departures from this temperature history in the actual case is
discussed below.

2.2.2 Temperature errors and data smoothing

Of the two sources of surface temperature errors in data reduc-
tion, items (3) and (4) above, the latter was investigated in
Reference 2 for the limit case in which the thermocouple installa-
tion is replaced by a cylindrical void. It is shown in Reference 2
that, if the change in surface heat-transfer rate during the response
time of the shield material immediately above the void is small
(10 percent) relative to the magnitude of surface heat-transfer rate
itself, then the departure of the temperature at the thermocouple
tip from that that would occur if the thermocouple were not present is
given by

_ R R
6Tc = 95 x f(E)

where, for R/E > 1, f(R/E) 1is a linear function. For a l-inch-
thick copper slab, a ratio R/E of unity and thermocouple void
radius of 0.02 inch, which are typical of the heat-sink shields
considered, thus reduces to

GTC = 0.0273 dq

The corresponding error at the surface is

6T_ = 0.0164 g

The maximum magnitude of surface heat-transfer rate anticipated
in any of the flights to be considered is (Refs. 3 and 4), approxi-
mately, 1500 Btu/ft®-sec leading to an upper limit of the error in
temperature at the thermocouple tip of approximately 41° F. The
results indicated above are for steady-state conditions in the ter-
minology of Reference 2, that is, the time at which the point in
question is within 10 percent of its asymptotic response value for
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a unit step in surface temperature. For times less than this the
corresponding errors, again according to Reference 2, are less
than those indicated above. This and the fact that the solutions
given above are for the limiting case obtained by replacing the
thermocouple installation by a void indicate that, in the worst
trajectory point to be considered in this study, temperature
errors due to the presence of thermocouples are estimated to be
no more than approximately 20° F and will range downward to zero
as the surface heat-transfer rates decrease from this level.

Since the temperature data scatter band is from 100 to 200° F in
the heat-sink shield flights tests to be considered in this study,
the temperature disturbances caused by the presence of thermo-
couples are negligible compared with the errors induced as the
result of scatter.

As noted above, the scatter bands of the available tempera-
ture data range from + 50 to + 100° F. The problem in utilizing
this data is to de l_c:ruu.uc, if yqu;blc, the magnitude of the errocr
in surface heat-transfer rates caused by using the scattered tem-
perature data in the data-reduction conduction solution. The
customary procedure in processing such data prior to application
in the conduction solution is to perform a smoothing operation to
reduce the data to a smooth, continuous response curve. Several
such smoothing procedures have been proposed and used in the past
that range from simple hand fairing of a curve through the data
to automatic, usually least squares polynomial, fits. The objec-
tive of the automatic smoothing programs is, of course, to elimi-
nate the factor of human judgement in the smoothing process.

Several such smoothing processes were considered for applica-
tion to the flight test data to be evaluated. The objective of
the study was to determine, empirically, with what accuracy one
can approximate a known analytical function representing a tem-
perature response by smoothing data generated on the basis of a
model of the process by which scatter is produced. The assump-
tions employed, based to a large extent on the characteristic
behavior of the data available, are as follows:

(1) The process by which the data are generated is such as
to produce a random scatter in the end results.

(2) The scatter band of a particular data trace is a fixed,
constant percentage of the calibrated instrument range.

(3) The temperature response is a smooth, continuous func-
tion of trajectory time.

With these assumptions "data" can be generated by starting with a
known analytical expression for the temperature, specification of
the instrument range and scatter band, and a table of random




numbers, for example, Reference 5. The particular case discussed
here used Equation (1) as the known temperature function in the
form

T = 1.2t%2 - 1.6x10"2¢>

which gives a maximum temperature rise of 1000° F at 50 seconds.

An instrument range of 1500° F, scatter band of + 8 percent of the
range, and 1 data point per second were assumed. These assumptions
correspond to the worst data observed in any of the experimental
results for ballistic vehicle heat shields.

Three smoothing procedures were applied to these data. In
all cases the final smoothed temperature curve was constrained to
have a zero initial slope which corresponds to conditions at the
initiation of re-entry heating for ballistic vehicles as observed
in the available temperature data. The first smoothing process
consisted of fitting the original data to a least squares cubic
over the entire time of the available data. In the second process
the data were first smoothed by using a seven point, least squares,
walking quadratic to define representative data points at the
mid-point of each seven point sample. (This process is described
in detail in Ref. 3.) The smoothed data obtained in this manner
were then fitted to a least squares cubic over the entire time.
Finally, the method developed and used in Reference 6 was employed
to determine representative data poilints which were then fitted to
a least squares cubic in the same way as in the other two methods.
The argument used in developing this last method is, briefly, that
one cannot distinguish changes in the data level to within the
scatter band of the data. Consequently, a representation of the
true temperature on an interval is obtained simply by averaging
all the data points that lie within a scatter band and then moving
on and averaging all the data that lie within the next change of
the magnitude of a scatter band.

The results obtained with these three methods of smoothing
are summarized in Figure 2 which also shows the original curve
from which the data were generated. The results shown are indica-
tive of the best that can be expected with these smoothing methods
since a choice of a smoothing function corresponding exactly to
the form of the actual temperature response function, as was done
in developing these results, would be fortuitous. The results
show that there is little to choose between direct smoothing of
the original data and pre-smoothing using the least squares, walk-
ing polynomial method. In this limiting case surface heat-transfer
rates inferred from temperatures obtained with either of the first
two smoothing methods would differ, during the time of heat flow
to the system, only in that the surface heat transfer history would
be shifted in time. It is also seen that use of results obtained
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with the last method described will produce a surface heat-transfer
history practically identical with that obtained using the original
temperature history except during cooling where the results will

be no worse than those obtained using the better of the first two
smoothing methods.

Based on these preliminary results the procedure being used
in data smoothing is that of the scatter band averaging described
above. Further work planned on the data smoothing problem will
consist of investigating the effect of choosing different polynomial
and other functional forms of the smoothing equation.

2.3 Prediction Methods

Under the flight test conditions to be considered in this study
there is no significant coupling between the boundary layers and
external flow fields during the time of appreciable aerodynamic
heating, that is, qg 2> 0.0qumax. Consequently, the prediction

problem reduces to definition of the external inviscid flow fields
and, subsequently, application of these results in the heat-transfer
prediction equations. Progress in each of these areas to date is
summarized below. Before describing the prediction work, however,

a brief introduction to a general method of solving nonlinear partial
differential equations is given. This is repeated in greater detail
in the attached appendix. This method was originally applied in
developing a direct method of solution of the blunt-body inviscid
flow problem. In this form it is being applied in this study in

the prediction of inviscid flow fields. As indicated in Section
2.3.4 and the appendix, it is also being considered for application
in obtaining boundary-layer solutions since, based on our study of
the method to date, it appears that it will be as simple to use as
existing prediction methods even though local similarity is not
assumed in obtaining the solutions.

2.3.1 The method of integral relations - application to inviscid
flow-field predictions

The general method of integral relations of A. A. Dorodnitzyn,
Reference 7, is a technique for obtaining solutions of systems of
nonlinear partial differential equations. A description of the
basic ideas employed in the method when applied to equations of
the boundary-layer type is described in the appendix. In this
appendix it is shown that k independent equations for the kth
approximation (i.e., where the boundary layer is divided into k
strips) are derived by introducing k independent smoothing func-
tions into the equations of motion. The original partial differen-
tial equations are reduced to ordinary differential equations by
integrating the equations, multiplied by the smoothing functions,
from the wall to edge of the boundary layer. Hence, k independent
equations result, one for each of the k smoothing functions.
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In the solution of the 1inviscid flow field, the same basic
ideas given in the appendix are employed. However, in place of
using a systesm of smoothing functions, the k independent ordinary
differential equations are derived by integrating the original
equations successively frem the body to the upper edge of each of
the k strips between the body and the shock wave. Thus, in the
first approximation the equations are integrated once between the
body and the shock wave. For the second approximation, the equa-
tions are integrated first from the body to a line half way between
body and shock and second from the body to the shock wave. The
further details of describing the resulting integrands by polynomials
which depend upon the degree of the approximation follow the descrip-
tion given in Appendix A and, as specifically applied to the inviscia
flow-field problem, are given in References 8 and 9.

2.3.2 Digital computer programs and solutions for the inviscid
flow fields about blunt bodies

Two complete digital computer programs for solution of the
blunt-body inviscid flow field problem using the methods developed
initially by Belotserkovskii, Reference 10, from the general formu-
lation of Reference 7, were obtained from Mr. G. H. Hoffman,
Lockheed Missiles and Space Company, Huntsville, Alabama. These
programs are the result of the work reported in Reference 8 and
continued by Mr. Hoffman since that time. In the terminology of
the Dorodnitsyn method the programs are for the first and second
approximations for computing the flows over blunt two-dimensional
and axisymmetric bodies. As received the programs were restricted
to perfect-gas flows about bodies generated by conic sections.

This latter restriction has been removed since receipt of the pro-
grams. The first approximation program is also capable of determin-
ing the flow about bodies with a sonic shoulder.

Simply stated the computation proceeds by starting with an
assumed shock stand-off distance and integrates the ordinary differ-
ential equations resulting from reduction of the continuity and
momentum equations. The integration is from the stagnation point
in a direction parallel to the body surface and is carried up to
the point where the tangential velocity is a specified percentage,
usually greater than 80 percent, of the sonic velocity. An iterative
procedure is then employed, satisfying the momentum and continuity
equations until the shock stand-off distance converges to eight
significant figures. At completion of this calculation the solution
is extrapolated through the sonic point singularity using a cubic
fit to the results at the last three integration points.

There are, of course, very definite limits on the conditions
and geometries for which solutions can be obtained. These depend
on the geometrical system employed and, in the second and higher
approximations, on the computational sequence used in finding the
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singularities in the flow between the body and the shock. Work with
the programs to date has been primarily concerned with determining
these limitations and devising methods of eliminating them. These
problems are briefly discussed in the following section.

Samples of results obtained to date are shown in Figure 3.
Conditions for the calculation were chosen to provide a check with
results given in Reference 1l1l. Also shown for comparison are
results for a hemispherically capped cylinder with a sonic shoulder
and the results obtained using the Newtonian approximation. The
agreement with the results for a sphere given in Reference 1l is
excellent. As a matter of interest the IBM 7094 computation time

for the complete sphere was 60 seconds, that for the capped cylinder
was 36 seconds.

2.3.3 Program limitations and modifications

The existing inviscid flow-field computer programs are written
in an R-f coordinate system. After making several sample runs with
these programs, and taking into account the published work of others
in the field (Refs. 7 and 9 ), it was found that certain limitations
are inherent in the method in terms of accuracy, Mach number range,
and body shape. All of these limitations are concerned with prac-
tical computational problems, not on basic theoretical considerations.
The various limitations will now be discussed briefly, along with
possible corrections or improvements where applicable.

2.3.3.1 Order of the successive iteration in the second
approximation

Inherent in the basic method of integral relations applied
to the calculation of inviscid flow fields is an iteration for the
shock stand-off distance in terms of satisfying certain smoothness
requirements on the sonic line. In the second approximation a
successive iteration is required, one for the sonic point on the
body and one for the midway line. Because the present programs
were written for supersonic Mach numbers close to unity, the body
point is iterated on first. For these low Mach numbers, the
coordinate lines 6 = constant will intersect the sonic line on
the body before the midway point as shown in the following sketch:




Sonic line

Midway line, second approximation

Body sonic point

However, for most axisymmetric body shapes, as the Mach number goes
above values of about 3, the sonic line bends farther forward so

that a 6 = constant 1line will intersect the sonic point on the
midway line before the body point. In this latter case, convergence
difficulties arise and computational accuracy may be greatly decreased
or the computation program simply will not run. Hence, for values

of Mach number greater than about 3, the present programs should be
reprogramed to reverse the order of the successive iteration scheme.

2.3.3.2 Large Mach number limitation for particular body shapes
with the first approximation

In general, it is much easier and much more economical to
solve problems employing the first approximation. In terms of
acceptable accuracy for the first approximation, it is necessary
for the 6 = constant lines to be as close to normal to both the
body and the shock wave over as much of the computing region as
possible. It is obvious that for certain body shapes, particularly
at hypersonic Mach numbers where the shock wraps around the body,
the R-Q coordinate system is a poor choice. The following sketch
shows an example of this.
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One way to eliminate this problem is to solve the inviscid flow-
field eguations in an s-n coordinate system (s along the body
and n normal to the body). This suggestion, if it leads to
acceptable accuracy for the first approximation (a claim made by
the Russian workers, see Ref. 12) would also be a solution to the
first limitation described above since it would not be necessary
to reprogram the second approximation. Reprograming of the first
approximation in the s-n coordinate system was initiated during
this reporting period in an effort to extend the range of applica-
tion of the presently available programs.

2.3.3.3 Blunt-cone body shape limitation
When an axisymmetric body is composed of a blunted cone in

which the cone angle is near the critical angle (i.e., sonic condi-

tion) for the given Mach number, the velocity distribution on the
body is as follows:

’J‘/f“"“ Extrapolated curve obtained

- from last few computed points
i
1.0 ~=
0.9 i
0.8
True curve

u l
£ |
c¥* |
!
0 l

1 —

0 2]

sonic

Typical curve for a blunted cone with a sonic corner.

Since the present programs compute to within 5 to 15 percent of
the sonic velocity, and then extrapolate to the sonic value, these
particular shapes cannot be handled with any reasonable degree of
success. At the present time a successful method for overcoming
this difficulty has not been found.
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2.3.4 Aerodynamic heating prediction methods

Methods for predicting the aerodynamic heating from laminar
and fully developed turbulent boundary layers have been chosen,
insofar as practical, to include the prediction techniques originally
employed in the design and evaluation of re-entry heat shields and
to represent a cross section of the many available methods. For
stagnation-point heating the flight conditions to be considered are
not such as to indicate a distinction between the original predic-
tion form of Fay and Riddell, Reference 13, and the more recent
results obtained by Hoshizaki, Reference 14, except as transport
properties can be treated parametrically in the method of Reference
13. Both these methods will be employed in predicting stagnation-
point heat-transfer rates. The prediction equations to be considered
for determining the distribution of aerodynamic heating from laminar
boundary layers can all be cast in the same general form. This is
shown in Table II which indicates the four methods presently planned
for use in comparisons with experimental results. Similarly, three
of the four methods to be considered for turbulent boundary layers
can be written in a single form as shown in Table III. The remain-
ing turbulent boundary-layer heating prediction method that will be
considered is that due to Eckert, Reference 21.

At the present time digital computer programs are being written
for the evaluation of the prediction equations shown in Tables II
and III. These will incorporate the properties of air in thermo-
chemical equilibrium and will treat the transport properties of air
as input parameters. In addition, as indicated above, it is planned
to investigate the possibility of using the method of integral rela-
tions in the prediction of heating from laminar and turbulent bound-
ary layers. It should be noted in this connection that complete
formulations of the systems of ordinary differential equations
resulting from application of this method are available through the
fourth approximation.

2.4 Man-Hour and Dollar Expenditures

The histories of expenditures of man-hours and dollars through
the end of this reporting period are shown in Figure 4. Also shown
there are the estimates of these histories made at the beginning of
this study.

In evaluating Figure 4 it should be particularly noted that
notification of approval of access to the X-17 data was received
at Vidya on July 1, 1963, that for the Polaris AIX data on August 7,
1963. Data from the NASA Scout Flight ST-8 were received on
August 20, 1963. Since the major cost associated with this study
is in the reduction of data, expenditures to date are necessarily
below those originally estimated on the assumption of a more or
less continuous flow of data for processing. It can be expected
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that this situation will be corrected during the next reporting
period since nearly all of the data are now available.

3. WORK ANTICIPATED - SEPTEMBER 14, 1963 THROUGH DECEMBER 13, 1963

The following items represent the work anticipated and esti-
mated degree of completion by the end of the next reporting period:

(1) Complete collection of all data necessary for data reduc-
tion and interpretation. This requires only completion of collec-
tion of data for the Polaris AIX flights.

(2) Complete smoothing of all temperature data in preparation
for use in data-reduction conduction calculations.

(3) Complete data-reduction conduction calculations for as
many flights as possibkble. It is expected that at least three of
these can be completed.

(4) Complete programing of existing laminar and turbulent
boundary-layer heat-transfer prediction methods.

(5) Complete modification of existing ideal-gas inviscid
flow field prediction methods. These modifications consist of
changing the coordinate and iteration systems in the present
programs.

(6) Complete study of the feasibility of using the method
of integral relations in prediction of aerodynamic heating.

(7) 1Initiate study of existing data on boundary-layer transi-
tion.
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APPENDIX A
DORODNITSYN'S METHOD OF INTEGRAL RELATIONS
AND ITS APPLICATION TO COMPRESSIBLE
TURBULENT BOUNDARY-~-LAYER THEORY

The general method of integral relations of A. A. Dorodnitsyn
(Ref. 1)* is applicable for the solution of systems of nonlinear
partial differential equations and was originally applied to the
solutions of equations of mixed type (elliptic - hyperbolic)
which arise in the solution of supersonic flow over blunt bodies.
In 1960 Dorodnitsyn published a paper (Ref. 2) in which he applied
his method for finding nonsimilar solutions of incompressible
laminar boundary layers. Recently, his method has been used in
solving incompressible laminar boundary layers with suction or
injection (Ref. 3) and compressible laminar boundary layers includ-
ing heat transfer to the wall (Ref. 4). The present discussion
will describe Dorodnitsyn's method as applied to a general system
of partial differential equations. A brief discussion will be
given at the end describing how the compressible turbulent boundary-
layer equations can be handled.

Perhaps the easiest way to describe the method of integral
relations is to compare it to two well-known methods of solving
the boundary-layer equations. The first of these is the finite-
difference approximation of derivatives.

The finite-difference derivative method for solving partial

differential equations is to approximate the derivatives of one

lReferences listed at end of this appendix.
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variable by an algebraic finite-difference scheme (our present
discussion will be confined to equations with two independent
variables). This method reduces systems of partial differential
equations to systems of ordinary differential equations. For
any finite-difference scheme, numerical accuracy is increased as
the interval (step) size is decreased. For example, a linear

interpolation scheme would be

225 £t E - 2%,

dx= (6x) 2

It is well known that, as more and more points are taken and the
interval size Ax approaches zero, the approximation scheme
approaches the true value of the derivative. The basic motivation
of the method, however, is to reduce partial differential equa-
tions to ordinary differential equations.

A second well-known and widely used method of solving the
boundary-layer equations is the Kirmin-Pohlhausen integral method.
The motivation behind this technique is also to reduce the problem
to a solution of ordinary differential equations; however, the
basic method employed in the reduction is quite different. 1In the
K&rmin-Pohlhausen method, the partial differential equations are
first integrated over one of the independent variables, resulting

in integro-differential equations. Then, the variation of the
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dependent function in the integrated variable is approximated

a priori, permitting evaluation of the integrals. Thus, the
problem reduces to ordinary differential equations in the second
independent variable. Normally, this is done when the variation
of the dependent function is much more rapid in one variable

than the variation in the other variable. The rapid-change vari-
able is then integrated upon. It must be realized, however, that
once the variation in one variable is assumed, no further improve-
ments are possible in correcting the assumed variation within the
framework of the basic method.

Dorodnitsyn's method is also based upon integral approxima-
tions, but there are important differences from the Karman-
Pohlhausen technique, being in fact an extension of the finite-
difference derivative method. Instead of approximating the
derivatives of one variable by a finite-difference scheme, the
original partial differential equations are integrated (exactly)

with respect to one variable, and then the integrands of the

various integrals are expressed in a finite-difference scheme

by interpolation formulas. The resulting integrals are then
integrated, either analytically or numerically, to yield ordinary
differential equations in the remaining independent variable.

A primary advantage exists, however, in that the finite-difference
interval may be systematically reduced with a corresponding
improvement of accuracy. In the limit, of course, the integrals

become exact.
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Dorodnitsyn has shown (Ref. 1) that, for a finite-difference
interpolation scheme of a given accuracy, the approximate repre-
sentation of integrals is more accurate than the representation
of derivatives; that is, for a given interpolation formula, the
integral of a functional quantity is represented more accurately
than its derivative, for a relatively large interval size.

Dorodnitsyn goes one step further than the above description
by multiplying the partial differential equations by a suitably
chosen smoothing function which permits improved accuracy with
large step sizes.

The method of integral relations will now be demonstrated
in detail by considering a system of n differential equations

with partial derivatives of the following type:

api an
K-‘.F:Fi ’ i=1,2, ... , n (1)
where
Pi = Pi(x,y 5 U o, U,y ... un)
Q, = Q; (x,y 3 U, U, ... u.)
Fi = Fi(x,y 5 U, U ... un)
u = ul(x,y), u, = u2(x,y), ceeou = un(x,y)
where the n-variables ul, u2, ... u are the unknown functions.

" An important step in the method is to write the equations in

divergence form, Equations (1), and for a given problem this must

be done initially.
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A solution to Equations (1) is sought in the interval
a {x<b (where a may approach -~ and b may approach + )
and c <y < &(x).

The given system of Equations (1) are now multiplied by a
function of the dependent variables, f(y). At the present, the
function £(y) 1is arbitrary but more will be said about its form
later. Next, the Equations (1), multiplied by £(y), are inte-
grated over y from c¢ to 6(x), yielding

pl e, g ) 20, 8 (x)
J £(y) 55 dy + J fy) 35 v = j £(y) F, dy  (2)
C

C C

Now, by differentiating the definite integral, it follows that

6 (x) o
_- £(y)P, dy = | f£ OP; dy + 5'£(8)P. (x,5)
ax b4 i 2’4 6}_ 4 i X,
c c
where §6' = d5/dx. The respective functions, £(6) and Pi(é),

are evaluated at the point y = o (x).

Also
d foi) 0 0Q,; 0
I—Ty—dy—[fs—y—-dy+f0if dy
c c c
where f' = df/dy. Using these results, it is possible to write

Equation (2) in the form

o

%f £p, dy - 5'£(8)P, (x,0) + £(5)Q; (x,0) - £(c)Q; (x,c)
C

) &
-[ £'Q, dy = f fF, dy  (3)
C C
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Up to this point only formal mathematics have been used and no
approximations have been employed in deriving Equation (3). Now,
the basic concepts of the method of integral relations will be

introduced.

Consider the function f(y). A system of functions fk,n(y)

(fl l), (f2 s £ ), ool , (F

> > 1 2,2 ky,2 °°° k,k)

are chosen such that in the kth group there are contained k
mutually independent functions (but in the different groups the
functions may coincide). Further, the particular choice of the
functions fk,m must be such that convergence of the various
integrals of Equation (3) is assured.

Next, the region of interest is divided into k strips

as follows:

Yi
| 6(x)

4
O Nuoow




~one for each f¢£
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Then, the functions Pi, Qi’ and Fi are approximated with the
help of certain interpolation formulas involving the values of

Pi’ Qi’ and Fi at the boundaries of the strips. For example,

k
P(X,y 5 W, W, .e.u) =) By L (x) Z(y). (4)
m=o
and similarly for Q; and Fi. Here, P, m(x) has the value
b
of Py at the lower edge of the mth strip.

Finally, the resulting ordinary differential equations are
found by substituting the interpolation formulas (Eg. (4)) into
the integrals and completing the integration. This results in
a system of n -k ordinary differential equations (for each of
the original n equations, there are now k more equations,

X n). The number of unknown functions (Pi, Q. ,
3

i
etc.) is n(k + 1) since there are k + 1 boundaries for k
strips. The physical boundary conditions, for which there are
in general n at each boundary (for the original n partial

differential equations), provide the remaining equations for the

remaining n unknowns. In other words, the method yields

n(k + 1) unknown functions
n-k ordinary differential equations
n boundary conditions

hence, the problem is closed.
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For the particular case at hand, namely, the compressible

turbulent boundary-layer equations, we have the following results.

Given equations:

ou , . ou _ . du, + 9 du (5)
T TV T aEx Yy oy
olpu) , d(pv) _
S Sy =0 (6)
€ = e(x,y) (7)

Given boundary conditions:
y =0 u=v=20
y =06(x): u=u » dy 0

Utilizing Dorodnitsyn's method described above, the equation

corresponding to Equation (3) is as follows:

2 du : . 1 .
gdg fﬁ@f dﬁ)=31— 7 f 6f' (1 - §°) ag - £L0£.(0) _ f £ a3

o]
O

o)

(8)

CRE—
du/dn

and the f = £ n are chosen in the form

-, M .
fk,m = (l - IJ.) ’ m = l, - e £} k




i O OGN N G Iy BN By R Ay B A s

)
)

A-9

The independent variables £ and 1 are related to the original
variables x and y through the turbulent analog of the Stewartson-

Illingworth transformation as given by Culick and Hill, Reference 5.

The function 6 is expressed in the kth approximation by an
interpolation formula of the form
- k-
6=—2 (a +aid+ ...+ a a f) (9)
l_a (o] 1 k-1

and the reciprocal of 6 by

1 _ 7/ _ _k—2\

5= (1 - u) Kbo + blu + ... + bk_.l u ) (10)

These approximations for 6 and 1/6 automatically satisfy the
boundary condition at y = 6(x), namely, 0du/dy = 0. The coef-
ficients ao,al ... and bo,bl ... are found from the condition

that for

ﬁ=% , i=0,1, ... k-1

the functions 6 and 1/6 would equal their exact value; that

is, for the kth approximation

u=0 , 9=60(€)
=5 , 0=01(8
G=72<- . 8 =06_(8)
- k-1 ~
u = ’ G-Qk_l(e)
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Hence, for the kth approximation, Equation (8) represents k

equations in the k unknowns eo(g), 91(5), ... el_k(e). These
resulting ordinary, first-order, nonlinear differential edquations
can be solved numerically by elementary means once ul(x) and

€ (x,y) have been specified.
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